首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6231篇
  免费   1470篇
  国内免费   573篇
化学   3305篇
晶体学   39篇
力学   178篇
综合类   27篇
数学   71篇
物理学   4654篇
  2024年   10篇
  2023年   74篇
  2022年   246篇
  2021年   329篇
  2020年   374篇
  2019年   319篇
  2018年   273篇
  2017年   363篇
  2016年   421篇
  2015年   376篇
  2014年   660篇
  2013年   573篇
  2012年   490篇
  2011年   492篇
  2010年   378篇
  2009年   405篇
  2008年   388篇
  2007年   405篇
  2006年   277篇
  2005年   226篇
  2004年   170篇
  2003年   136篇
  2002年   115篇
  2001年   85篇
  2000年   98篇
  1999年   81篇
  1998年   75篇
  1997年   64篇
  1996年   55篇
  1995年   39篇
  1994年   36篇
  1993年   25篇
  1992年   32篇
  1991年   21篇
  1990年   29篇
  1989年   19篇
  1988年   13篇
  1987年   17篇
  1986年   4篇
  1985年   18篇
  1984年   19篇
  1983年   9篇
  1982年   20篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
排序方式: 共有8274条查询结果,搜索用时 15 毫秒
61.
While concerns about improving recharged afterglow intensity in vivo still motivate further exploration, afterglow nanoparticles (AGNP) offer unique optical merit for autofluorescence-free biological imaging. Apart from efforts enhancing the afterglow emission properties of AGNP, improving afterglow excitation response to visible or near infrared light is important but has lacked success. Dye sensitization has been used to improve the optical response of photovoltaic nanomaterials and to enhance upconversion luminescence efficiency. This concept has recently been expanded and applied to AGNPs. As a new multifunctional nanoprobe, such dye-sensitized AGNP takes advantage of both high spatial resolution fluorescence imaging and sensitive afterglow imaging. This Concept introduces the background, the concept, mechanism, and related imaging application, as well as reviewing existing challenges and proposing future developmental directions for the dye-sensitized AGNPs.  相似文献   
62.
Mass spectrometry imaging (MSI) is an important analytical technique that simultaneously reports the spatial location and abundance of detected ions in biological, chemical, clinical, and pharmaceutical studies. As MSI grows in popularity, it has become evident that data reporting varies among different research groups and between techniques. The lack of consistency in data reporting inherently creates additional challenges in comparing intra- and inter-laboratory MSI data. In this tutorial, we propose a unified data reporting system, SMART, based on the common features shared between techniques. While there are limitations to any reporting system, SMART was decided upon after significant discussion to more easily understand and benchmark MSI data. SMART is not intended to be comprehensive but rather capture essential baseline information for a given MSI study; this could be within a study (e.g., effect of spot size on the measured ion signals) or between two studies (e.g., different MSI platform technologies applied to the same tissue type). This tutorial does not attempt to address the confidence with which annotations are made nor does it deny the importance of other parameters that are not included in the current SMART format. Ultimately, the goal of this tutorial is to discuss the necessity of establishing a uniform reporting system to communicate MSI data in publications and presentations in a simple format to readily interpret the parameters and baseline outcomes of the data.  相似文献   
63.
This paper reports the synthesis, characterization and in vivo application of water-soluble supramolecular contrast agents (Mw: 5–5.6 kDa) for MRI obtained from β-cyclodextrin functionalized with different kinds of nitroxide radicals, both with piperidine structure ( CD2 and CD3 ) and with pyrrolidine structure ( CD4 and CD5 ). As to the stability of the radicals in presence of ascorbic acid, CD4 and CD5 have low second order kinetic constants (≤0.05 M−1 s−1) compared to CD2 (3.5 M−1 s−1) and CD3 (0.73 M−1 s−1). Relaxivity (r1) measurements on compounds CD3 - CD5 were carried out at different magnetic field strength (0.7, 3, 7 and 9.4 T). At 0.7 T, r1 values comprised between 1.5 mM−1 s−1 and 1.9 mM−1 s−1 were found while a significant reduction was observed at higher fields (r1≈0.6-0.9 mM−1 s−1 at 9.4 T). Tests in vitro on HEK293 human embryonic kidney cells, L929 mouse fibroblasts and U87 glioblastoma cells indicated that all compounds were non-cytotoxic at concentrations below 1 μmol mL−1. MRI in vivo was carried out at 9.4 T on glioma-bearing rats using the compounds CD3 - CD5 . The experiments showed a good lowering of T1 relaxation in tumor with a retention of the contrast for at least 60 mins confirming improved stability also in vivo conditions.  相似文献   
64.
Room temperature phosphorescence (RTP) materials are characterized with emission after removing the excitation source. Such long-lived emission feature possesses great potential in biological fluorescence imaging because it enables a way regarding temporal dimension for separating the interference of autofluorescence and common noises typically encountered in conventional fluorescence imaging. Herein, we constructed a new type of mesoporous silica nanoparticles (MSNs)-based composite nanoparticles (NPs) with dual-color long-lived emission, namely millisecond-level green phosphorescence and sub-millisecond-level delayed red fluorescence by encapsulating a typical RTP dye and Rhodamine dye in the cavities of the MSNs with the former acting as energy donor (D) while the latter as acceptor (A). Benefiting from the close D-A proximity, energy match between the donor and the acceptor and the optimized D/A ratio in the composite NPs, efficient triplet-to-singlet Förster resonance energy transfer (TS-FRET) in the NPs occurred upon exciting the donor, which enabled dual-color long-lived emission. The preliminary results of dual-color correlation imaging of live cells based on such emission feature unequivocally verified the unique ability of such NPs for distinguishing the false positive generated by common emitters with single-color emission feature.  相似文献   
65.
Bioconjugated nanomaterials replace molecular probes in bioanalysis and bioimaging in vitro and in vivo. Nanoparticles of silica, metals, semiconductors, polymers, and supramolecular systems, conjugated with contrast agents and drugs for image-guided (MRI, fluorescence, PET, Raman, SPECT, photodynamic, photothermal, and photoacoustic) therapy infiltrate into preclinical and clinical settings. Small bioactive molecules like peptides, proteins, or DNA conjugated to the surfaces of drugs or probes help us to interface them with cells and tissues. Nevertheless, the toxicity and pharmacokinetics of nanodrugs, nanoprobes, and their components become the clinical barriers, underscoring the significance of developing biocompatible next-generation drugs and contrast agents. This account provides state-of-the-art advancements in the preparation and biological applications of bioconjugated nanomaterials and their molecular, cell, and in vivo applications. It focuses on the preparation, bioimaging, and bioanalytical applications of monomodal and multimodal nanoprobes composed of quantum dots, quantum clusters, iron oxide nanoparticles, and a few rare earth metal ion complexes.  相似文献   
66.
Fluorous tagged peptides have shown promising features for biomedical applications such as drug delivery and multimodal imaging. The bioconjugation of fluoroalkyl ligands onto cargo peptides greatly enhances their proteolytic stability and membrane penetration via a proposed “fluorine effect”. The tagged peptides also efficiently deliver other biomolecules such as DNA and siRNA into cells via a co-assembly strategy. The fluoroalkyl chains on peptides with antifouling properties enable efficient gene delivery in the presence of serum proteins. Besides intracellular biomolecule delivery, the amphiphilic peptides can be used to stabilized perfluorocarbon-filled microbubbles for ultrasound imaging. The fluorine nucleus on fluoroalkyls provides intrinsic probes for background-free magnetic resonance imaging. Labeling of fluorous tags with radionuclide 18F also allows tracing the biodistribution of peptides via positron emission tomography imaging. This mini-review will discuss properties and mechanism of the fluorous tagged peptides in these applications.  相似文献   
67.
针对基于AD9874芯片的数字接收机的最小谱宽和谱宽允许设置的数目均不能满足常规临床用磁共振成像技术的要求,本文从软件角度提出了一种扩展数字接收机谱宽的二次抽取算法. 该算法具体实现过程主要包括两个步骤:(1) 自适应过采样倍率和自动谱宽调整;(2) 数字滤波和抽取. 为了验证这个二次抽取算法的有效性,本文分别用单脉冲实验和磁共振成像实验加以了验证.  相似文献   
68.
合成和表征了一种苯并噻唑类的荧光探针(YH1),并用光谱法研究了它对不同金属离子的响应。结果表明:YH1对Hg2+显示出好的选择性和灵敏度,与Hg2+作用后,在紫外光的激发下它的溶液颜色由蓝色变为无色。在1.4~8.8μmol·L-1浓度的范围内,YH1的荧光强度与Hg2+浓度有线性关系,其对Hg2+的检出限为0.56μmol·L-1。此外,YH1可跨过细胞膜,细胞毒性低,还可应用于He La活细胞中对Hg2+进行荧光成像。  相似文献   
69.
以L-薄荷醇为原料,经3步反应制备得到中间体薄荷基二氯化膦.该中间体首先通过与超声波辐射制备的微米级钠粒反应形成薄荷基膦二钠盐,然后依次经过偶联及氧化反应合成了目标产物(-)-双(薄荷基甲酰基)薄荷基氧化膦(BMMPO),并经过1 H NMR、13 C NMR、31P NMR和元素分析进行了表征.  相似文献   
70.
The development of sensitive and selective small molecular probes that enable real‐time detection of endogenous cysteine (Cys) has become an attractive topic because of the essential roles played by Cys in controlling the cellular nitrogen balance and in maintaining biological redox homeostasis. Herein, we report a Cys‐specific probe, 2‐cyanobenzothiazol‐6‐yl acrylate (CBTOA), that shows not only fluorescence turn‐on for sensitive detection of endogenous Cys but also enhanced probe retention inside cells for real‐time monitoring of Cys levels upon external stimulation. Cys‐mediated intracellular formation of luciferin from CBTOA was the key strategy leading to this new type of fluorogenic probe. CBTOA showed fast response to Cys in living cells and liver tissue slices with high sensitivity and selectivity. By using CBTOA as a real‐time probe, we were able to monitor the change in Cys levels in living HeLa cells under ROS‐induced oxidative stress as well as in human mesenchymal stem cells during adipogenic differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号